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A general expression for the effective thermal conductivity of inhomogeneous 
media in terms of the Fourier' components of the spatial variation of the 
conductivity is applied to composites consisting of inclusions in a continuous 
matrix. It is reformulated in terms of the mean square fluctuations of the 
conductivity. Specific cases treated are spherical inclusions and long cylinders, 
both random and with preferred directions. The results hold provided the 
difference in thermal conductivities is small or provided the concentration of 
inclusions is not too large. The theory fails if the thermal conductivity of the 
matrix is much smaller than that of the inclusions. The same considerations also 
apply to electrical conductivity. 

KEY W O R D S :  composites; concrete; conductivity; fibers; inclusions; oriented 
fibers; porosity; spheres; thermal conductivity. 

1. I N T R O D U C T I O N  

In a previous paper [1] an expresion was obtained for the thermal 
conductivity of an inhomogeneous medium, provided the local value of the 
thermal conductivity ~c(r) can be expressed in terms of Fourier components 

to(r) = ~r + ~ 1r e iq r (1) 
q 

where ~o is the volume-average of tr Defining the effective thermal 
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conductivity ~:e in terms of the rate of entropy production and the average 
temperature gradient, the following expression was found: 

1 
/s = /~0 --~00 q~ I~:(q)12 c~ 0 (2) 

where 0 is the angle between the wave-vector q and the direction of the 
average temperature gradient. 

The sum of [K(q)l 2 over all wave-vectors can be identified with the 
mean square fluctuation of K(q), i.e., 

Itc(q)12 = Vo ~ f drE~c(r ) -~:0] 2 (3) 
q 

where Vo is the volume of the domain of integration. 
Equation (2) places an upper limit on the thermal conductivity, 

namely, the volume-average Ko. In many cases one may expect the second 
term to be small. Equation (2) is useful only if the Fourier components 
~:(q) can be obtained and the summation over all wave-vectors carried out. 
However, in isotropic cases, where in the average cos 2 0 = 1/3, one can use 
Eq. (3). 

The present paper considers simple models of two-phase composites: 
a continuous matrix containing inclusions which are either spheres or long 
cylinders. Equation (3) is used to evaluate the second term in Eq. (2), 
which reduces Ke below K o. The results are expressed in terms of the 
fractional volume occupied by the inclusions. 

The procedure fails when the fractional volume of inclusions becomes 
too large, since correlations in their position must then become important. 
It also fails in the limit when then conductivity of the continuous matrix 
becomes very small, since there is then no entropy production in the 
matrix. Finally, Eq. (2) is no longer useful when the second term 
approaches Ko in magnitude, since any error in the evaluation would then 
be magnified. 

2. SPHERICAL INCLUSIONS 

Consider a random assembly of spherical inclusions in a matrix of 
volume Vo. Let xl be the conductivity of the matrix, ~c2 that of the 
inclusions, and f the volume fraction of inclusions. Then 

KO = (1 - - f ) / r  q- fig 2 (4)  
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and 

( ,  

Vo 1 j dr [K(r) - ~0] 2 =f~c 2 + (1 - f ) ~  - ~Co 2 

= (1 - f ) f ( ~ c  1 - tr 2 (s) 

Using Eqs. (2) and (3), since cos 2 0 = 1/3 in the case of isotropy, 

~ = ~c o - - f ( 1  -- f ) ( ~ l  - ~c2)2/3 ~Co 

1 
= ~q(1 - f )  + x 2 f -  ~ (1 - f ) f  

K - -  K 2 )  2 

K I ( I - f ) + K 2 f  
(6) 

This equation is symmetrical in the two components, and the depar- 
ture from ~o is independent of the sign of x 1 - ~c2. When ~ci - ~c 2 is small 
compared to ~c 0, it should hold over the entire composition range. 

In the special case when ~2 ~ ~:1, so that the inclusions have negligible 
conductivity, 

~o=~1(1-4f/3)=~co-f~d3 (7) 

For example, there is a 10 % departure from the volume-averaged conduc- 
tivity if f =  0.3. Equation (7) breaks down when f becomes too large, and 
also there are conceptional difficulties in all cases when f >  0.5. 

Equation (7) applies in all cases when there are voids in a continuous 
matrix, ranging from ceramics with some porosity to bubbles blow into 
concrete to reduce its thermal conductivity. 

The case ~ci ~ ~c2 presents difficulties. A straightforward application of 
Eq. (6) would yield 

~o = ~ 2 ( 4 / -  1)/3 (8) 

so that t% would appear to be negative for f < 0.25. This result is clearly 
unphysical; it is a consequence of the assumptions of the theory breaking 
down. If the matrix has zero conductivity, there is no entropy production 
in the matrix. Entropy production can then occur only if the inclusions are 
numerous enough to touch frequently and to form a continuous percola- 
tion path [2].  The present method is therefore unsuited to all cases when 
the conductivity of the majority phase is very small. In particular, this 
includes foams, for which the minority phase has a relatively high conduc- 
tivity but is constrained to be continuous. 
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3. L O N G  FIBERS 

Consider a long fiber of cross-sectional area A in a matrix of cross- 
sectional area Ao, so that f =  A/Ao. Again, let ~c 1 be the conductivity of the 
matrix and ~:2 that of the fiber material. As before, the sum of the squares 
of the Fourier components is given by Eq. (5). Now, however, the wave- 
vectors of the Fourier components all lie in a plane perpendicular to the 
fiber axis. If the fiber has a circular cross section, they are distributed 
isotropically in that plane. 

Let the fiber axis make an angle ~b with the direction of the 
temperature gradient. A wave-vector q, lying in the normal plane, has a 
component ql in the plane formed by the fiber axis and the temperature 
gradient and a component q2 normal to that plane. Thus 

cos 0--s in  ~ for ql 
(9) 

cos 0 = 0 for q2 

Averaging over all directions of q in the plane normal to the fiber axis, so 
that in the average q12 = 5ql 2, 

(cos 2 0 )  = sin 2 ~b/2 (10) 

and from Eqs. (3) and (5), 

Ix(q)l 2 cos: 0 = �89 sin 2 ~bf(1 - f ) ( x l  - x2) 2 (11) 
q 

For an assembly of long parallel fibers, with the temperature gradient 
making an angle ~ with the fiber axes, tce becomes 

1 sin2 ~bf(1 - f ) ( ~ q  - lc2) 2 (12) 

In the special case when all fibers are parallel to the temperature 
gradient, sin ~b = 0, and ~e = ~o, as expected. 

If the fibers are oriented completely at random, so that in the average 
sin 2 ~b -- 2/3, one reverts to Eq. (6). This equation applies to inclusions of all 
shapes, provided they are randomly oriented, so that the overall medium 
is isotropic, that is without preferred directions. Thus, for randomly 
oriented fibers 

~c~ = ~c o - f ( 1  - f ) ( ~ l  - ~c2)a/3~Co (13) 

Another case of interest is when all fibers lie normal to a given direction 
and are randomly oriented in the normal plane. Let the temperature 
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gradient make an angle ~ with that plane. A particular fiber has its axis at 
an angle/? with the projection of grad T in that plane. The angle ~b between 
the fiber axis and grad T is then given by 

cos 2 ~b = 1 -- sin 2 ~b --- cos 2 ~ cos 2 fl (14) 

and averaging over all orientations of/3, so that cos2/~ = �89 

(sin 2 ~ )  = 1 - �89 cos 2 e (15) 

Substituting this into Eq. (12), 

~:~ = Xo - [(1 + sin 2 ~)/4~c0] f (1  - f ) ( K  l - x2) 2 (16) 

The thermal conductivity is thus anisotropic, is a minimum in the direction 
normal to the plane of the fibers, when sin c~ = 1, and a maximum in direc- 
tions lying in that plane. The conductivity is below the volume-averaged 
conductivity ~:o in all cases. It is interesting that K~ is a minimum in the 
direction normal to the fiber plane irrespective of whether the conductivity 
of the fibers is larger or smaller than that of the matrix. 

Again, these expressions hold provided 

/ ( 1  - f ) (~c  1 -- tr 2 ,~ too 2 (17) 

In the case of fibers of very low conductivity in a conducting matrix, where 
~c o -- (1 - f ) ~ c  1 and ~c 2 = 0, Eq. (13) becomes 

~c~ = K~(1 - 4f/3) (18) 

This would apply, for example, to the case of glass fibers in a metal matrix 
provided the fractional fiber volume is not too large. 

In the opposite case of conducting fibers in an insulating matrix, the 
theory breaks down, for the same reason as discussed in Section 2, and the 
problem becomes a percolation problem. 

4. S U M M A R Y  

The general equation (2) for the effective" thermal conductivity has 
been applied to the cases of spherical inclusions and fiber inclusions. 
Estimates are given for the departure from the volume-averaged 
conductivity. For those cases where this departure is only a small fraction 
of the conductivity, the results appear to be reliable. The theory fails for the 
case of a nonconducting matrix. 
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